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The Hilbert space L2(SU(2)) as a representation space for the 
group (sum x SU(2)) 0 s, 

R Dirl 
1. Institut fur theoretische Physik, Technische Hochschule, Karlsplatz 13, A-1040 Vienna, 
Austria 

Received 18 July 1975, in final form 1 March 1976 

Abstract. The Hilbert space L’(SU(2)) is used as a representation space for a (unitary) 
representation of the semi-direct product group (SU(2) XSU(2)) @Sa and the correspond- 
ing group algebra. Special operators are constructed which are closely related to the 
representation theory of the groups SU(2) and Sz and are irreducible tensor operators with 
respect to (SU(2) x SU(2)) @ Sz. These operators are then used to define a complete set of 
irreducible tensor operators and to calculate two classes of Clebsch-Gordan coefficients of 
(SU(2) x SU(2)) Q S2. 

1. lntrodnction 

It is well known that the theory of irreducible tensor operators (IT) constitutes an 
important practical calculus for problems in nearly all fields of theoretical physics. 
However, to exploit the general results of this theory for a concrete problem one has to 
know the unitary irreducible representations (unirreps) and Clebsch-Gordan coeffi- 
cients (CG coefficients) for the group in question and has to define explicitly all the 
necessary operators in the given Hilbert space. This paper deals mainly with the 
problem of how to construct by means of ‘induction’ out of the IT already known with 
respect to SU(2) x SU(2), IT with respect to the semi-direct product group (SU(2) X 

su(2)) @ S1. We use these IT to calculate CG coefficients for the semi-direct product 
group which are important for the theory of selection rules for physical systems which 
are (approximate) invariant with respect to this semi-direct product group. Therefore 
the results of this paper can be applied to all problems where the semi-direct product 
  YO UP appears as (approximate) symmetry group and where the carrier space is 
isomorphic to (invariant subspaces or coset spaces of) L’(SU(2)). Examples are the 
(Wickrotated) Bethe-Salpeter equation (Guth and Soper 1975, B o b  e t d  1973) and 
the hydrogen atom, where the subspace of bound states is, in a natural way, isomorphic 

L’(SU(2)) since there exists a one-to-one mapping between the eigenstates of the 
hidrogen atom Hamiltonian (in parabolic coordinates) and the elements D%,l of 
L(su(2)), and where the semi-direct product group plays the role of a dynamical 
invariance group (Dirl and Kasperkovitz 1976). If the (function and/or operator) 
labelling problem is solved, practical calculations can be simplified extremely (expan- 
S1onS of interaction operators in terms of convenient IT). For instance, in the first 

both the ‘orbital’ and ‘spin’ part of the Bethe-Salpeter wavefunctions trans- 
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form according to unirreps of the semi-direct product SOUP and the physically relevat 
states have to be constructed by using CG coefficients of this group. 

In the previous paper (Dirl 1976, to be referred to as I), we have investigated 
problems concerning the construction of convenient operator bases whose elements are 
IT with respect to SU(2) X SU(2). There we succeeded in defining complete sets of IT 
composed of special operators which are closely related to the representation theory of 

SU(2). Besides this we found useful operator identities between these specid which 
are of interest for practical calculations. 

The conventions and notation of I are used throughout this paper. The materid is 
organized as follows. In § 2 we summarize the properties of the unirreps of (su(2) x 
SU(2)) @ S2. Besides this, we consider three types of subductions and calculate the 
corresponding multiplicities. The multiplicities occurring in the reduction of &e 
Kronecker products are also determined quite generally. In 8 3 we define a unitary 
representation of (SU(2) x SU(2)) @ S2 and a representation of the corresponding 
group algebra. In $ 4  the ‘global’ and ‘local’ definition of an IT with respect to 
(SU(2) x SU(2)) @ S2 is stated; the second one is more useful in defining such IT. The 
construction of an IT with respect to (SU(2) X SU(2)) @ S 2  can be simplified extremely2 
one knows IT with respect to the normal subgroup. IT within the group algebra and 
special IT closely related to the matrix elements of the unirreps of the group SU(2) are 
discussed in $0 5 and 6. These IT allow us to calculate quite generally two classes of CG 
cueacients for the semi-direct product group. Just as in 00 5 and 6 we construct in 8 7 
(without knowing explicitly the CG coefficients of the semi-direct product group) much 
more general IT composed of IT introduced in I. Thereby a complete set of 1~ with 
respect to (SU(2) x SU(2)) @ S2 is defined which is equivalent to the set of IT introduced 
in I. 

2. Properties of the nnirreps of (Su(Z)xSU(Z))@ Sz 

Since we are interested in defining (in L2(SU(2))) IT with respect to (SU(2)X 
SU(2))@S2 we need the matrix elements of the unirreps of this group or its fie 
algebra. First of all we summarize the definition of this semi-direct product P U P  

(00 = (OYO, 0)): 

(SU(2) x ~ ~ ( 2 1 )  0 ~2 = {(q, w21r) : oi E ~ ~ ( 2 1 ,  r( = e, s) E S J  

(w, w2le)(d, 4 e )  = (olwi, w2ohle) 

(WO, wols)(wl, ozle)(oo, ools)-’ = (02, olle) 

b o ,  wolr)(%, oolr’) = (oo,oo(”). 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Equations (2.1-4) show that this group is (in a purely algebraic sense) indeed a 
semi-direct product group with normal subgroup SU(2) x SU(2) (for topological ques- 
tions see Dirl and Kasperkovitz 1976). 

For the unirreps of (SU(2) X SU(2)) @ S2 there exists two different types (Dkl and 
Kasperkovitz 1976)’ 

(2.5) 

(2.6) 



dim DjjK(ol, o z ( r )  = (2j + 1)' 

dim Di1jZ(o1, wzlr) = 2(2j1 + 1)(2jz+ 1). 
(2.9) 

(2.10) 

It is easily proved by means of equations (2.7,8) and the well knownpropertiesof the 
matrix elements of the unirreps of SU(2) (Rose 1957) that each unirrep of 
(su(2) x sU(2)) @ Sz is equivalent to its complex conjugate: 

~ i j ~ * ( o ~ ,  021r) = u j j ~ ~ j j ~ ( o ~ ,  ozlr> (2.1 1) 

(2.12) Vi]" Zj+m'i+m' 
mlm2,mimi = (-1) 2Sml,-miSm2,-mi, 

. .  . .  
Diijz*(ol, 0 2 1 r )  = Ul~lzDliJz ( 1, wz(r) UjJz' 

Ujr )k lmz,r *mlmi  - - (- l)jl+m;+jz+mL &l,r"Smi,-mi mz,-mi- 

(2.13) 

(2.14) 

This implies that all primitive characters must be real (Hamermesh 1962) which is of 
some relevance if one calculates the multiplicities for certain subductions. The charac- 
ters of the unirreps (2.5,6) are given by 

X i i K ( @ l ,  wle> = x i ( w ) x i ( 4  (2.15) 

xjiK(ol,  wzls) = ( - l ) K x j ( w l o z )  (2.16) 

~ j l ' 2 ( q ,  q [ r )  = s r e @ ( o l ) ~ j z ( o z )  +xjz(wl)x'~(oz>),  (2.17) 

where the quantities x'(wi) =xi*(,,) denote the primitive characters of SU(2). 
By means of the character formula for SU(2) (Hamermesh 1962) 

m..,.#, ], , = 1 dp(w)x'(o)x''(o)x"(o) = AGj'j'') (2.18) 

where A(jj'j") means the triangle symbol which is completely symmetric in all indices, 
One can easily calculate the multiplicities for the following subductions: 

(2.19) 

(2.20) 
~ ~ j ~ ( o ~ ,  o21r) J. S U Q ~  x S U ( ~ )  = ~'(o1,w) 

~ j l j z ( o ~ ,  ozlr)d SUQ) x S U ( ~ ) =  D'~'z(o~, ~ z ) ~ ~ j ~ ~ ( ~ i ,  02).  

b e  symbol Dij'(ol, 02) introduced in I denotes the unirreps of SU(2) X SU(2).) 

(2.21) 

(2.22) 
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(As in I the symbol [ X ]  is used for Kronecker products.) 

Dj jK(~ l ,  & S2  L' mjjK,,,D"'(r) (2.24) 

(2.25) 

(2.26) 

mjl , , ,  = (2j1 + 1)(2j2 + 1). (2.27) 

n e  first step which has to be done if one wants to calculate the CG coeflicienb for 
(SU(2) x SU(2)) @ S2 is to calculate the multiplicities occurring in the Gonecker 
products: 

(2.28) 

For the sake of brevity we denote the labels j j ~  or j l j 2  which distinguish the equivalence 
classes of the unirreps of (SU(2) X SU(2))O S 2  by the symbols a(@, y). By using the 
character formula 

D%17 ozIr)OD'(ol, wIr) =E@ ma&y(w17 wlr). 
Y 

(2.29) 

and equation (2.18), we obtain, through straightforward calculation, the multiplicities 

m Ilr,] . . .I I ., K I .,, 1 .,, K j r =  A(jj'i">&.,+,~ (2.30) 

m.. IIK,J . , . I  x ' , j I j z  = W j ' j 1 ) A ( j j ' j 2 )  (2.31) 

m.. I p q i I z ~ i j ~  . I . ,  = A(jM)A(jj%) + A(jji$)A(&.j?) (2.32) 

m. lll~,lll~,m . .?., = A( id f i )A( id ih )  + A ( j d j 2 A (  j 2  jhi"d 
+ A ( ~ I ~ % ' > A (  hi'lj3 + A(j1 j;fi)A(j&). (2.33) 

This implies that (SU(2) X SU(2)) 0 S2 is not a simply reducible group (in the sense of 
Ha"nesh  1962). Only in the cases (2.30,31) are the CG coefficients uniquely 
determined up to a phase factor. 

We denote the CG coefficients of (SU(2) x SU(2))B Sz  by 

P P' P n w  . P ( P ' , P ' ? = j j K ;  P(p',P'?=mlmz [ ( p  p' 1 prr 1' ~ ( p ' ,  p") =jlj2; p ( p ' ,  p") = r'mlmz 
w = 1 ,2 , .  . . , mpPepn 

They are elements of unitary matrices, i.e. they must satisfy the usual orthogonditY 
relations. Furthermore they must decompose the reducible representation (2.28) into 
the desired direct sum of unirreps (CG series): 



3. ~ ~ ( s U ( 2 ) )  as a representation space for (sU(2) X SU(2)) @ S2 and the correspond- 

ne Hilbert space L2(SU(2)) which was introduced in I can be used as a representation 
space for (SU(2) x SUP)) 0 S2. The unitary representation U of S U ( ~ )  x S U ( ~ )  (see 

(2.4) of I) can be extended to a unitary representation V of (SU(2)x 
su(2)) @ S2 in the following way: 

iop gronp algebra 

V : wzlr)+ V(01, w21r) = U(w1, 02) ~ ( r )  

w ( @ l 7  U2ieif l(o) = C V ~ ~ , ,  wz)fl(w) =f(o;lwz) 

[V(@o, wols)fl(o)=[W(s)fl(o)=f(w-’).  (3.1) 
However as in I this representation V is not a faithful one. V is only isomorphic to 
SO(4, R) @ SZ where the normal subgroup SO(4, R) is the homomorphic image of 

(3.2) 
SU(2) x SU(2): 

W(S) U(% 0 2 )  m s )  = U(w7 w d .  

As in I we use as basis of L’(SU(2)) the functions 

{a’,, : j = o ,  ~ , 1 ,  . . . ; - jS  m, k Sj}. (1.2.8) 1 

By means of the definition (3.1) we obtain 

W(s)Q’,, = (-1)”Q’,, (3.4) 

(3.5) 

which show that this basis of L2(SU(2)) carries a direct sum of the unirreps 
1 {D’jK‘)(ul, wzIr) : j =  Q , 5 ,  1, . . . with KO’) = 2j  mod 2). 

Each unirrep DJiK’)(wl, ozlr) occurs only once in V. 
Finally one realizes that the subduction (2.21) leads in general to reducible 

representations of (SU(2)[ xISU(2)) x Sz. With the aid of the CG coefficients of SU(2) 
we obtain immediately the elements Qi‘  of a new basis of L’(SU(2)) which transform 
according to the unirreps D’(o)@DKj(i)(r) of SU(2) x S2. 

Q’,”=C ( i n -  k,jklln)Q’,-kk (3.6) 
k 

(3.7) 

In analogy to I we introduce by 

(3.8) 

‘!Presentations of the group algebras ‘i’d((SU(2) X SU(2)) @ S2) (i = left or right). For 

(3.9) 

c (w1, o2Ir) E L~( ( su (~>  x SUO)) 0 S2) 

reasons to those in 0 2 of I, the operators 
EjNA ,&,”k’ = $ [ E i k , m ’ k ’ +  (-1) KO’) E m k , k ’ m ’ W ( S ) I  ii 

only ‘units’ of ‘i’d((SU(2) x SU(2)) @ S,) which do not vanish identically. The 
Operators E:k,,,’k’ appearing in (3.9) are given by equation (2.19) of I. 
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4. rr with respect to (Su(2) x SU(2)) 0 Sz 

The general definition of an IT with respect to (su(2) X su(2)) @ SZ is given by the 
transformation properties of its components. An equivalent definition uses the “mu- 
tation relations of the IT components with the elements of the left- and right-Lie 
algebras and the transformation properties with respect to the finite group Sz: 

v(@1, @21r>P&vf.(@I, ‘%.(r) = M’K’ 2 DZK’,MK(@l, @Z(r)p$~’ (4.1) 

[ &’J*, p$d = [ (J M)(J f kf + 1)]1’2 p$* 1,K 

[&’J3, ?“$d = &$K 
[‘R’J+, p$d= [ ( J T K ) ( J * K +  l)]l’z?~K+l (4.2) 

The elements of the left- and right-Lie algebras are given by equations (3.7-10) of I. 
Because of 

w(s)‘L’Jj = ‘R’4 W(s), (4.7) 

which is a consequence of equation (3.2), it is clear that equations (4.5) and (4.6) with 
r = e suffice to define IT of rank J1, Jz. 

It is obvious that the relations (4.2,3) and (4.5,6) are very useful if one wants to 
construct IT with respect to (SU(2) x SU(2)) @ Sz. For if we know IT with respect to 
SU(2) X SU(2) we are able to ‘induce’ by means of equation (4.3,6) operators whichare 
IT with respect to (SU(2) X SU(2)) @ Sz. This is just the ‘inverse’ of the subdudon 
problem (see equations (2.19,20)). If IT with respect to (SU(2) x SU(2)) @ sz are given 
and we restrict this group to the normal subgroup then there are two possibilities: 

(4.8) 
(4.9) 

(we use for IT with respect to SU(2) x SU(2) the notation introduced in 1). mereas In 
the fist case an rr remains an IT, it always decomposes into two IT in the second case. 
TO decide which ranks J, J, K or J1, Jz  (J1 < J2) of IT can be realized in L2(su(2)) it 

Suffices to remember that V is isomorphic to SO(4, R)@S2 or to investigate the 
Wigner-Eckart theorem for (SU(2) x SU(2))@S2. Fortunately we are confronted ’* 
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be multiplicity-free cases only because of equation (3.5) (for this reason we omit the 
dummy index W ) :  

(B@) means either J J K ( M .  or J1J2(r'MK)). It is therefore obvious that the following 
ranks are allowed: 

JJK:  J = O , k , l ,  ..., K=0,1 (4.11) 

J J 2  : 4 =o, 1,2 , .  . . or J. I =' 2 ¶ 2 , . . . .  3 (4.12) 

The problem of decomposing a given operator 0 E VQ in rr components with respect 
to (SU(2) X SU(2))@S, can in principle be solved in the following way (Dirl and 
Kasperkovitz 1976, Dirl 1974a,b): 

(4.13) 

(4.15) 

We assume just as before that the right-hand sides of equations (4.13,14) make sense, 
i.e. that QE VQ (d (7.1) of I). 

5. IT within the group algebra 

In analogy with I, the first type of IT which we introduce are the elements of the tensor 
basis of "'d((SU(2) x SU(2)) @ S,). Then we have two possibilities. First they can be 
delinedusing the matrix elements of UfjK') (see equation (2.12)) and the CG coefficients 
for (SU(2) x S U ( ~ ) )  0 sZ: 

(Cf Kasperkovitz and Dirl 1974). The possible values for /3 ( p )  for fixed j jK 0') are given 
by equation (2.30). Therefore P ( p )  can take the following values: 

P = JJO, J = O , l ,  ..., 2j  ( P  = MK) (5.2) 

P = J l J 2 ,  Ji = 0 , 1 , .  . . , 2 j  (p = r'MK). (5.3) 
The second possibility does not require us to know the CG coefficients for (SU(9)X 
su(2)) @ S2 and therefore allows us to calculate them. For, remembering equations 
(4.8,9) and the definitions (4.1,2,7,8) of I of the IT within the group algebra of 
su(2) X SU(2), it is obvious the two different types of IT components (5.1) are given by: 

(5.4) 
(5.5) 

(5.6) 

j j K O ) ; J I O  = (L)  j.J(R) j ; J  TMK T M  T K  

i r : L g ; J ~ J z  = (!-)Ti; MJ 1 (R)T$J~ 

~ L i i $ ; J , 3 z  = (L)T$JZ(R)T$-,. 



850 R Did 

(5.7) 
being a consequence of equation (3.2) (with wz = WO),  is similar to equation (4.7). If we 
now calculate the matrix elements of the IT components (5.4-6), taking into a”t 
that these are multiplicity-free cases, we obtain the following CG meffi&nb for 
(SU(2) x SU(2)) 0 sz: 

(5.9) 

(5.10) 

Toobtain this result one has to use equations (3.11), (4.1,2), (2.20,21) of I and (2.37)of 
this paper. With the aid of equations (2.30,37) we also find the following CGcoefficients: 

JJK j l j l K I  j r ~ j r r K r r  I } = (JM, j’m’lj’”‘’)(JK, j’k’lj’”’’)S.~~,,+,~. (5.11) MK m’k‘ m”k” 

6. Matrix elements of the unirreps of SU(2) as IT 

The second type of IT with respect to (SU(2) x SU(2)) @ S2 are just the operators (5.1) 
of I: 

[QE%fI(o) = Q;K(o)~(w). (6.1) 

Because of equation (5.2) of I and 

W(S) Q;;vc“(s) = (- l)K‘R’Qg, K ( R )  = 2R mod 2 (6.2) 

it is obvious that for fixed R the operators (6.1) form an IT of rank R, R,K(R).  USingthe 
CG coefficients (5.11) we can rewrite equation (5.4) of I in the following way: 

(2R + 1)(2R’+ 1) 
M‘K‘ 1 W K “  

(6.3) 
QE:QE= ;, ( 2Rfl + ) MK 

’’herefore the reduced matrix elements are equal to those which are given by the 
Wigner-Eckart theorem for SU(2) x SU(2). 

7. Complete sets of IT composed of QK and elements of the tensor bads 

The special IT with respect to SU(2) x SU(2) which we have introduced in 9 6 Of I (‘ 
(6.1-8) of I) can be easily extended by means of equations (4.3,6) to ITWith respect to 
(sU(2) X SU(2))@S;?. Of course one has to distinguish between the cases A = B  and 



(Toprove these relations one has to use equations (6.1-4,7,8,13,14) of I, (5.7) and (6.2) 
ofthis paper). This means that the operators (6.1,2) of I and the s u m  (difference) of the 
operators (6.7) and (6.8) of I, i.e. 

(7.4) j j ’pJR3’)AA - 1 j j ’  3RJ’)AA jj‘f(a$.l’)AA) 
f ab - 2 (  T(,F 

are already IT of the ranks A, A,  K ’  with K ’ =  2A +J, 2A +J,  2R, 2R + 1.  In the case 
A < B  we obtain immediately by means of equation (4.6), the following IT: 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 
(7.10) 

(7.11) 

(7.12) 

(7.13) 

To prove the relations (7.7,10,13) one has to use once again equations (6.1- 
4,7,8,13,14) of I, (5.7) and (6.2) of this paper. Now it is obvious that the operators 
(5.4-6) for j = j ’  and the operators (7.4,l l)  for j # j ‘  form a complete set of IT provided 
that (7.3) of I is taken into account. Finally we are able to specify, for the multiplicity- 
free cases, the CG coefficients for (SU(2) x SU(2)) @ Sz. For if we compare equation 
(4.10) with (3.1 1) of I for a given IT component of the type (7.11) taking into account 
equation (2.37), we obtain 

{ 5152 j ’ j ’ K ’ /  j j K }  1 
= (JIM, j‘m’ljm)(JzK, j’k’1jk)- eMK m’k’ mk J2 

(7.14) 

(-1)K+K’ 
(7.15) j ‘ j ’ K ‘  j j K  

sMK m’k! mk 
{ ’ l J Z  1 } = (J2K, jfm’1jm)(J1M, j ’ k ’ 1 j k ) T  

(7.16) 

= om, j’m‘lJ2K)(ik, j‘k’[JIM)(-l)“’“’, (7.17) 

where the specid cases (5.9,lO) are contained in equations (7.14,15). (The index w 
ln&Qting the multiplicity is again omitted.) 
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Of course it is obvious that the way to construct IT with respect to ( ~ ~ ( 2 1 ~  
su(2)) @ s2 which are composed of the operators Q% and elements of !he enveloping 
algebra is exactly the same as shown before. This gives us a further possibility (namely 
by means of the operator W(s)) to correlate the elements of the left- and right- 
enveloping algebras, especially the elements of the left- and right-Lie algebras forming 
together an IT of rank 0 , l  with respect to (su(2) X su(2)) @ sz. This Will be of interest 
for physical systems whose state spaces are isomorphic to (invariant subspaces Or coset 
spaces of) L’(SU(2)) and where a symmetry operation of order two (such as the parity 
for the hydrogen atom (Dirl and Kasperkovitz 1976)) appears. 

8. Condnsions 

It was the aim of this paper to gain more insight into the problems arising in the 
construction of IT with respect to a semi-direct product group whose normal subgoup 
is non-Abelian. Using as basis of our considerations the Hilbert space L’(Su(2)) 8 
carrier space we discussed the question whether it is possible to trace back any IT (with 
respect to the semi-direct product group) to IT already known (with respect to the 
normal subgroup) by means of ‘induction’. In so doing we have shown the advantages of 
constructing IT with respect to the supergroup starting from the IT already known with 
respect to the normal subgroup. Since the unineps, the unitary matrices U relating the 
unirreps to their complex conjugates, the CG coefficients for SU(2) and the unirreps of 
(SU(2) X SU(2)) @ S2 are well known we are able: 

(i) to give explicit expressions of IT within the group algebra; 
(ii) to construct, without knowing the CG coefficients for (SU(2) X SU(2)) @ SZ, a 

complete set of IT (with respect to (SU(2) X SU(2)) @ S 2 )  from the IT already known 
(with respect to SU(2) x SU(2)); and 

(iii) to calculate by means of these special IT two classes of CG coefficients for 
(SU(2) X SU(2)) @ S 2  which are important when studying selection rules. 

These considerations concerning SU(2) can be easily transferred to any finite Or 
compact conthuous group G if one knows the unirreps, the unitary matrices Urelating 
the unirreps to their complex conjugates, the CG coefficients for G and the unheps of 
(G X G) @ Sz. Furthermore this example offers the possibility of calculating Some 
classes of the CG coefficients for the semi-direct product group. Besides this, complete 
sets of IT and the explicit knowledge of CG coefficients are of interest for all physical 
systems whose carrier spaces are isomorphic to (invariant subspaces or coset spaces 06 
L (G) and where a finite group of order two plays a major role (as for the h y W P  
atom (see Dkl and Kasperkovitz 1976) or for the Bethe-Salpeter equations (See Guth 
and Soper 1975, Bohm et a1 1973)). Finally the operator W(s) representing the 
non-identity element of S2 offers a further possibility to correlate the elements of the 
left- and right-enveloping algebras if G is a compact continuous group. 
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